skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Ma, Q"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract While whistler‐mode waves are generated by injected anisotropic electrons on the nightside, the observed day‐night asymmetry of wave distributions raises an intriguing question about their generation on the dayside. In this study, we evaluate the distributions of whistler‐mode wave amplitudes and electrons as a function of distance from the magnetopause (MP) on the dayside from 6 to 18 hr in magnetic local time (MLT) within ±18° of magnetic latitude using the Time History of Events and Macroscale Interaction During Substorms measurements from June 2010 to August 2018. Specifically, under different levels of solar wind dynamic pressure and geomagnetic index, we conduct a statistical analysis to examine whistler‐mode wave amplitude, as well as anisotropy and phase space density (PSD) of source electrons across 1–20 keV energies, which potentially provide a source of free energy for wave generation. In coordinates relative to the MP, we find that lower‐band (0.05–0.5fce) waves occur much closer to the MP than upper‐band (0.5–0.8fce) waves, wherefceis electron cyclotron frequency. Our statistical results reveal that strong waves are associated with high anisotropy and high PSD of source electrons near the equator, indicating a preferred region for local wave generation on the dayside. Over 10–14 hr in MLT, as latitude increases, electron anisotropy decreases, while whistler‐mode wave amplitudes increase, suggesting that wave propagation from the equator to higher latitudes, along with amplification along the propagation path, is necessary to explain the observed waves on the dayside. 
    more » « less
  2. Self-supervised learning(SSL) is essential to obtain foundation models in NLP and CV domains via effectively leveraging knowledge in large-scale unlabeled data. The reason for its success is that a suitable SSL design can help the model to follow the neural scaling law, i.e., the performance consistently improves with increasing model and dataset sizes. However, it remains a mystery whether existing SSL in the graph domain can follow the scaling behavior toward building Graph Foundation Models~(GFMs) with large-scale pre-training. In this study, we examine whether existing graph SSL techniques can follow the neural scaling behavior with the potential to serve as the essential component for GFMs. Our benchmark includes comprehensive SSL technique implementations with analysis conducted on both the conventional SSL setting and many new settings adopted in other domains. Surprisingly, despite the SSL loss continuously decreasing, no existing graph SSL techniques follow the neural scaling behavior on the downstream performance. The model performance only merely fluctuates on different data scales and model scales. Instead of the scales, the key factors influencing the performance are the choices of model architecture and pretext task design. This paper examines existing SSL techniques for the feasibility of Graph SSL techniques in developing GFMs and opens a new direction for graph SSL design with the new evaluation prototype. Our code implementation is available online to ease reproducibility https://github.com/HaitaoMao/GraphSSLScaling. 
    more » « less
  3. Olney, AM; Chounta, IA; Liu, Z; Santos, OC; Bittencourt, II (Ed.)
    An advantage of Large Language Models (LLMs) is their contextualization capability – providing different responses based on student inputs like solution strategy or prior discussion, to potentially better engage students than standard feedback. We present a design and evaluation of a proof-of-concept LLM application to offer students dynamic and contextualized feedback. Specifically, we augment an Online Programming Exercise bot for a college-level Cloud Computing course with ChatGPT, which offers students contextualized reflection triggers during a collaborative query optimization task in database design. We demonstrate that LLMs can be used to generate highly situated reflection triggers that incorporate details of the collaborative discussion happening in context. We discuss in depth the exploration of the design space of the triggers and their correspondence with the learning objectives as well as the impact on student learning in a pilot study with 34 students. 
    more » « less
  4. Abstract Interchange instability is known to drive fast radial transport of electrons and ions in Jupiter's inner and middle magnetosphere. In this study, we conduct a statistical survey to evaluate the properties of energetic particles and plasma waves during interchange events using Juno data from 2016 to 2023. We present representative examples of interchange events followed by a statistical analysis of the spatial distribution, duration and spatial extent. Our survey indicates that interchange instability is predominant atM‐shells from 6 to 26, peaking near 17 with an average duration of minutes and a correspondingM‐shell width of <∼0.05. During interchange events, the associated plasma waves, such as whistler‐mode, Z‐mode, and electron cyclotron harmonic waves exhibit a distinct preferential location. These findings provide valuable insights into particle transport and the source region of plasma waves in the Jovian magnetosphere, as well as in other magnetized planets within and beyond our solar system. 
    more » « less
  5. Abstract We present statistical distributions of whistler‐mode chorus and hiss waves at frequencies ranging from the local proton gyrofrequency to the equatorial electron gyrofrequency (fce,eq) in Jupiter's magnetosphere based on Juno measurements. The chorus wave power spectral densities usually follow thefce,eqvariation with major wave power concentrated in the 0.05fce,eq–fce,eqfrequency range. The hiss wave frequencies are less dependent onfce,eqvariation than chorus with major power concentrated below 0.05fce,eq, showing a separation from chorus atM < 10. Our survey indicates that chorus waves are mainly observed at 5.5 < M < 13 from the magnetic equator to 20° latitude, consistent with local wave generation near the equator and damping effects. The hiss wave powers extend to 50° latitude, suggesting longer wave propagation paths without attenuation. Our survey also includes the whistler‐mode waves at high latitudes which may originate from the Io footprint, auroral hiss, or propagating hiss waves reflected to highMshells. 
    more » « less
  6. Abstract Electromagnetic ion cyclotron waves in the Earth's outer radiation belt drive rapid electron losses through wave‐particle interactions. The precipitating electron flux can be high in the hundreds of keV energy range, well below the typical minimum resonance energy. One of the proposed explanations relies on nonresonant scattering, which causes pitch‐angle diffusion away from the fundamental cyclotron resonance. Here we propose the fractional sub‐cyclotron resonance, a second‐order nonlinear effect that scatters particles at resonance ordern = 1/2, as an alternate explanation. Using test‐particle simulations, we evaluate the precipitation ratios of sub‐MeV electrons for wave packets with various shapes, amplitudes, and wave normal angles. We show that the nonlinear sub‐cyclotron scattering produces larger ratios than the nonresonant scattering when the wave amplitude reaches sufficiently large values. The ELFIN CubeSats detected several events with precipitation ratio patterns matching our simulation, demonstrating the importance of sub‐cyclotron resonances during intense precipitation events. 
    more » « less
  7. The redshifted 21 cm signal from the Epoch of Reionization (EoR) directly probes the ionization and thermal states of the intergalactic medium during that period. In particular, the distribution of the ionized regions around the radiating sources during EoR introduces scale-dependent features in the spherically averaged EoR 21 cm signal power spectrum. Aims. The goal is to study these scale-dependent features at different stages of reionization using numerical simulations and to build a source model-independent framework to probe the properties of the intergalactic medium using EoR 21 cm signal power spectrum measurements. Methods. Under the assumption of high spin temperature, we modeled the redshift evolution of the ratio of the EoR 21 cm brightness temperature power spectrum to the corresponding density power spectrum using an ansatz consisting of a set of redshift and scale-independent parameters. This set of eight parameters probes the redshift evolution of the average ionization fraction and the quantities related to the morphology of the ionized regions. Results. We tested this ansatz on different reionization scenarios generated using different simulation algorithms and found that it is able to recover the redshift evolution of the average neutral fraction within an absolute deviation ≲0.1. Conclusions. Our framework allows us to interpret 21 cm signal power spectra in terms of parameters related to the state of the IGM. This source model-independent framework is able to efficiently constrain reionization scenarios using multi-redshift power spectrum measurements with ongoing and future radio telescopes such as LOFAR, MWA, HERA, and SKA. This will add independent information regarding the EoR IGM properties. 
    more » « less
  8. Abstract Energetic particle injections are commonly observed in Jupiter's magnetosphere and have important impacts on the radiation belts. We evaluate the roles of electron injections in the dynamics of whistler‐mode waves and relativistic electrons using Juno measurements and wave‐particle interaction modeling. The Juno spacecraft observed injected electron flux bursts at energies up to 300 keV atMshell ∼11 near the magnetic equator during perijove‐31. The electron injections are related to chorus wave bursts at 0.05–0.5fcefrequencies, wherefceis the electron gyrofrequency. The electron pitch angle distributions are anisotropic, peaking near 90° pitch angle, and the fluxes are high during injections. We calculate the whistler‐mode wave growth rates using the observed electron distributions and linear theory. The frequency spectrum of the wave growth rate is consistent with that of the observed chorus magnetic intensity, suggesting that the observed electron injections provide free energy to generate whistler‐mode chorus waves. We further use quasilinear theory to model the impacts of chorus waves on 0.1–10 MeV electrons. Our modeling shows that the chorus waves could cause the pitch angle scattering loss of electrons at <1 MeV energies and accelerate relativistic electrons at multiple MeV energies in Jupiter's outer radiation belt. The electron injections also provide an important seed population at several hundred keV energies to support the acceleration to higher energies. Our wave‐particle interaction modeling demonstrates the energy flow from the electron injections to the relativistic electron population through the medium of whistler‐mode waves in Jupiter's outer radiation belt. 
    more » « less
  9. Abstract We evaluate the diffusive and nonlinear scattering of ring current protons by electromagnetic ion cyclotron (EMIC) waves in the Earth's inner magnetosphere using test particle simulations. EMIC waves are commonly observed inside and outside the plasmasphere with wave amplitudes ranging from 100 pT to several nT. Field‐aligned EMIC waves can scatter 1 keV–1 MeV protons counter‐streaming with respect to the waves through first order cyclotron resonance. Through the analyses of the proton equatorial pitch angle variations along the field line, our simulations reveal the typical interaction features including quasilinear diffusion for small wave amplitudes, phase trapping and bunching at intermediate and large pitch angles, anomalous phase trapping and positive phase bunching at small pitch angles, and non‐resonant scattering at pitch angles and energies outside the resonance regime. Using different wave amplitudes from 100 pT to 5 nT, we compared the modeling results of proton equatorial pitch angle variations between quasilinear and test particle simulations, and between diffusive scattering and advective effects. For monochromatic He‐band EMIC waves atL = 5, the interaction between protons and EMIC waves with amplitudes below 500 pT could be described as a diffusive process and quantified by quasilinear theory; nonlinear interactions and advection effects become important for wave amplitudes larger than 1 nT. The interactions between EMIC waves and ring current protons are analogous to the interactions between whistler‐mode chorus waves and radiation belt electrons described in previous studies, despite the quantitative differences in the wave amplitude threshold of quasilinear diffusion applicability. 
    more » « less